289 research outputs found

    Cholangiocytes: Cell transplantation

    Get PDF
    Background:Due to significant limitations to the access to orthotropic liver transplantation, cell therapies forliver diseases have gained large interest worldwide.Scope of review:To revise current literature dealing with cell therapy for liver diseases. We discussed the ad-vantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying thepotential benefits of transplantation of human biliary tree stem cells (hBTSCs).Major conclusions:Transplantation of adult hepatocytes showed transient benefits but requires immune-sup-pression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hemato-poietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes butrather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adultliver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liverdisease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markersin (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. Inthefirst cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse eventbut significant benefits.General significance:The biliary tree stem cell could represent the ideal cell source for the cell therapy of liverdiseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by JesusBanales, Marco Marzioni, Nicholas LaRusso and Peter Jansen

    The morphomolecular features of cholangiocarcinoma in the personalised era

    Get PDF
    Cholangiocarcinoma is a group of diverse invasive malignancies arising along the biliary tract. The outcomes for patients with cholangiocarcinoma remain poor but an understanding of molecular aberrations and subsequent targeted therapies to these have opened up new treatment prospects. This review describes the clinical and morphological features and classifications of intrahepatic and perihilar cholangiocarcinoma in addition to laying out the related landscape of the molecular pathology within cholangiocarcinoma. The importance of both a high index of suspicion of cholangiocarcinoma and preserving tissue whilst reporting to access molecular testing and personalised treatment pathways is emphasised

    Contribution of resident stem cells to liver and biliary tree regeneration in human diseases

    Get PDF
    Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression

    Intrahepatic cholangiocarcinoma: review and update

    Get PDF
    Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies that could develop at any level from the biliary tree. CCA is currently classified into intrahepatic (iCCA), perihilar and distal on the basis of its anatomical location. Of note, these three CCA subtypes have common features but also important inter-tumor and intra-tumor differences that can affect the pathogenesis and outcome. A unique feature of iCCA is that it recognizes as origin tissues, the hepatic parenchyma or large intrahepatic and extrahepatic bile ducts, which are furnished by two distinct stem cell niches, the canals of Hering and the peribiliary glands, respectively. The complexity of iCCA pathogenesis highlights the need of a multidisciplinary, translational and systemic approach to this malignancy. This review will focus on the advances of iCCA epidemiology, histo-morphology, risk factors, molecular pathogenesis, revealing the existence of multiple subsets of iCCA

    Editorial: Cell therapy, liver diseases, and regeneration

    Get PDF

    Liquid Biopsy in Rare Cancers: Lessons from Hemangiopericytoma

    Get PDF
    Hemangiopericytoma (HPT) is a rare mesenchymal tumor of fibroblastic type and for its rarity is poorly studied. The most common sites of metastatic disease in patients with intracranial HPT are the bone, liver, and lung, suggestive for an hematogenous dissemination; for this reason, we investigated, for the first time, the presence of circulating tumor cells (CTCs) in hemangiopericytoma patient by CellSearch® and SceenCell® devices. Peripheral blood samples were drawn and processed by CellSearch, an EpCAM-dependent device, and ScreenCell®, a device size based. We found nontypical CTCs by CellSearch system and the immunofluorescence analysis performed on CTCs isolate by ScreenCell demonstrated the presence of single CTCs and CTC clusters. The molecular characterization of single CTCs and CTC clusters, using antibodies directed against EpCAM, CD34, cytokeratins (8, 18, and 19), and CD45, showed a great heterogeneity in CTC clusters. We believe that the present study may open a new scenario in the rare tumors: the introduction of the liquid biopsy and the molecular characterization of circulating tumor cells could lead to personalized targeted treatments and also for rare tumors

    Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies

    Get PDF
    Abstract Purpose of Review To describe experimental liver injury models used in regenerative medicine, cell therapy strategies to repopulate damaged livers and the efficacy of liver bioengineering. Recent Findings Several animal models have been developed to study different liver conditions. Multiple strategies and modified protocols of cell delivery have been also reported. Furthermore, using bioengineered liver scaffolds has shown promising results that could help in generating a highly functional cell delivery system and/or a whole transplantable liver. Summary To optimize the most effective strategies for liver cell therapy, further studies are required to compare among the performed strategies in the literature and/or innovate a novel modifying technique to overcome the potential limitations. Coating of cells with polymers, decellularized scaffolds, or microbeads could be the most appropriate solution to improve cellular efficacy. Besides, overcoming the problems of liver bioengineering may offer a radical treatment for end-stage liver diseases

    Nitric oxide involvement in the acrosome reaction triggered by leptin in pig sperm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) is a signaling molecule produced by intracellular nitric oxide synthase (NOS) enzymes. This free radical appears to affect sperm capacitation, a maturation step preceding acrosome reaction. Recent studies have reported leptin ability to promote capacitation and acrosome reaction in pig male gametes.</p> <p>Methods</p> <p>This study has investigated nitric oxide production in leptin-treated pig spermatozoa by fluorescence-activated cell sorting, while the intracellular NOS isoforms were assessed by Western blot analysis. In addition, acrosome status of treated-spermatozoa was evaluated by FITC-PNA staining.</p> <p>Results</p> <p>Significant increases of nitric oxide levels and acrosome reaction extent were detected in leptin-treated spermatozoa, but both the effects were reversed in presence of <it>L</it>-NAME. Furthermore, the immunoblots of sperm extracts have evidenced three bands of ~160 Kd(bNOS), ~130 Kd (iNOS) and ~135 Kd (eNOS).</p> <p>Conclusions</p> <p>The identification of the three intracellular NOS isoforms suggests that pig spermatozoa could produce NO, while the augmented nitric oxide levels in leptin-treated male gametes indicates the capacity of the hormone to induce nitric oxide production. Furthermore, the inhibitory effect of <it>L</it>-NAME and of Ab-ObR on the promotion of acrosome reaction triggered by leptin suggests a possible involvement of NO in the hormone action.</p
    corecore